Multi-core, NUMA,
Heterogeneous...Oh my!

Jeff Keasler
Aug 9, 2007

Umverszty of Caltfornia

M awrence Livermore
National Laboratory

P.O. Box 808, Livennore CA 94551

Thiswork was performed under the auspices of the U.S. Dept. of Energy by the University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL-PRES-233978

Outline

Data Structure Choices

Performance of Data Structure Choices
Vector Extensions

Advanced Features of Vector Extensions
Conclusion

Fundamental Data Layouts

Memory Interleave

« Array-Like T 1 x T x Tx Ix
— double x[10000] ;

double y[10000] ; Yy [Y|y Yy

double z[10000] ; s lz 1212121z

Fundamental Data Layouts

Memory Interleave

o Array-Like e
— double x[10000] ;

double y[10000] ; y Y 0y Yy

double z[10000] ; >lz 12121717

e Struct-Like

— struct coord {
double x, vy, z ; Xy |z|x|y |z

}mesh[lOOOO]; x|y |lz|x|y|z

Fundamental Data Layouts

Memory Interleave

* Array-Like S
— double x[10000] ;
double y[10000] ; vy))
double z[10000] ; z1lz1z1lz1z 1|z
o Struct-Like 2 P .
— struct coord {
double x,y, z ; X [Y B X [V
} mesh[10000] ; x |y B x |y B

e Clustered-Struct

— struct coord {
double x,y ; X |y [x|y |x |y

} coord[10000] ;

double z[10000] ;

DB: blast_001_00000
0 = Sample Mes
fud e
-:]emlcx'\ne_]
2 concrats_2

Mesh
I
Topological] 1
Structure: Elements Nodes

Explosive Concrete

Array-like access

real8 quarterDelta = 0.25 * deltaTime;

for (inti=0 ;i< material_length ; i++){
int index = material_mapi;
real8 szz = - sxx[index] - syy[index] ;

deltz[index] += quarterDelta * (vnew[index] + v[index]) *

(dxx[index] * (sxx[index] + newSxx[i]) + dyy[index] * (syy[index] + newSyy][i]) +
dzz[index] * (szz + newSzz[i]) +

2.*dxy[index] * (txy[index] + newTxyJi]) + 2.*dxz[index] * (txz[index] + newTxz][i]) +
2.*dyz[index] * (tyz[index] + newTyz][i])) ;

delts[i] += quarterDelta * (vnew[index] + v[index]) *

(dxx[index] * sxx[index] + dyy[index] * syy[index] + dzz[index] * szz +
2. *dxy[index] * txy[index] + 2.*dxz[index] * txz[index] + 2.*dyz[index] * tyz[index]) ;

Struct-like access

for (inti =0 ;i< material_length ; i++){
int index = material_map[i;
real8 szz = - elem[index].sxx — elem[index].syy ;

elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx) +
elem[index].dyy * (elem[index].syy + materialElem[i].newSyy) +
elem[index].dzz * (szz + materialElem[i].newSzz) +
2.*elem[index].dxy * (elem[index].txy + materialElem][i].newTxy) +
2.*elem[index].dxz * (elem[index].txz + materialElem][i].newTxz) +
2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz)) ;

materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * elem[index].sxx + elem[index].dyy * elem[index].syy +
elem[index].dzz * szz + 2.*elem[index].dxy * elem[index].txy +
2.*elem[index].dxz * elem[index].txz + 2.*elem[index].dyz * elem[index].tyz) ;

}

Clustered-Struct access

for (inti =0 ;i< material_length ; i++){
int index = material_map[i;
real8 szz = - elem[index].sxx — elem[index].syy ;

deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) *

(deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx) +
deform[index].dyy * (stress[index].syy + materialStress[i].newSyy) +
deform[index].dzz * (szz + materialStress[i].newSzz) +

2. *deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) +

2. *deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) +

2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz)) ;

delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) *
(deform[index].dxx * stress[index].sxx + deform[index].dyy * stress[index].syy +
deform[index].dzz * szz + 2.*deform[index].dxy * stress[index].txy +
2.*deform[index].dxz * stress[index].txz + 2.*deform[index].dyz * stress[index].tyz) ;

}

Audience Survey

* For those of you who have worked on
mesh based software, who has used:
— An Array-like model?

— A Struct-like model?
— A Clustered-Struct Model?
— Other?

 What model are you using in your software
right now?

Performance — Single Region

1.1

1,05 F

0,95 F

0,9

0,85

normalized time

0.8
0,75
0.7

Cache Hit t;% —

0,65

stress subset

Array-like

d

i "Itaniumé" [
"Opteron”
"Powerh”
Worse
Better

<

» Struct-like
mem | ayout

A domain of 12000 elements contains two sparse material subsets of
8000 and 4000 elements. The 8000 element subset is traversed.

Performance — Mesh Cover

stress subset cover

141 T T
"Ttanium2" m—
"Opteron” e
"Powerh"
1,05 F .
1}
Worse
v 0,95
=
=
ﬁ 0.4
T
&
= 0,85
0,8
0,75 Better
0,7
Array-like < > Struct-like
mem] ayout

A domain of 12000 elements contains two sparse material subsets of
8000 and 4000 elements. Both subsets are traversed, covering the domain.

Cube Traversal Example

sum = 0.0
foreach (elem) {
foreach (node) {
sum += X
sum +=vy
sum +=z

}
}

Each element touches
eight nodes, and each
node has three
coordinate components.

v

Cube Traversal Performance

cube traverzal

1.1 r T T T T T T r r
"Thanium2" I

"Opteron” e

"Powerh" -

Worse

mormalized time

Better

Array-like Coord-struct Conn—=truct Struct-like

mem] ayout

An unstructured, optimally ordered IndexSet covers a 3D cube of hexahedral
elements. Each element accesses eight nodes. Spatial cache reuse.

Jacobi Iterative Solution for
Poisson Problem

©OO0O0000O0O0
O O0OO0O00O0O0O0

O O OO0 O O O
O O O O O
O O OO0 O O O

O OO0O00O0O0O0
O OO0O00O0O0O0
©OO0OO0000O0O0

El —
Vip=Ff
O Boundary, 9 =0
O Interior solution space

Jacobl lteration Performance

poizzon jacobi

1.1

1F

0.9 } Worse

0.8 f

ed time

A

0.6 F

0.5

Better

0,4

fArray-like < » Struct-like
mem] ayout

u new =-0.25* (f/dh?2—-u_old(left) —u_old(right) — u_old(bottom) — u_old(top))

Interpretation of Results

1. Data structure choices are system
architecture and problem domain
dependent.

2. Data structure choices can result in a 2x
performance difference on a given
machine.

3. Choosing a data structure that is best for
one machine can be the worst for
another machine.

Software Engineering
Considerations

There Is no simple way to determine the
best data structure across all possible
architectures at the beginning of a
software project.

Once you have chosen a data structure
strategy, it will likely be time-consuming
and error-prone to convert to another.

System architectures change over time.

Hypothetical Case Study

Assume a large program has been written to use struct-
like data structures for memory efficiency.

Assume a new processor with vector instructions Is
iIntroduced that performs best with array-like data
structures.

Possible choices:

1. Rewrite for the array-like data structure so you can take
advantage of extra performance on the new architecture with
some performance degradation on all other machines.

2. Keep the struct-like data structure with a significant
performance degradation on the new architecture.

3. Maintain two copies of the code or use preprocessor directives
to select between data structures.

4. Use the best possible data structure on every machine without
touching a single line of code...

Vector Extension

double quarterDelta = 0.25 * deltaTime;

while(material) {
real8 szz = - Sxx - syy ;

deltz += quarterDelta * (vhew + v) *
(dxx* (sxx + newSxx) + dyy * (syy + newSyy) +
dzz * (szz + newSzz) +
2.*dxy * (txy + newTxy) + 2.*dxz * (txz + newTxz) +
2.*dyz * (tyz + newTyz)) ;

delts += quarterDelta * (vhew + v) *
(dxx*sxx+ dyy*syy+ dzz *szz +
2.7dxy * txy + 2.*dxz *txz + 2.*dyz *tyz);
}

Vector Schema

View element
Field deltz
Field dxx dyy dzz dxy dxz dyz
Field sxx syy
Field txy txz tyz
Field v vnew
View material
Field delts
Field newSxx newSyy newSzz
newTxy newTxz newTyz
View
View

Note: Multiple keywords after a Field keyword indicate a struct-like
interleave.

Vector Extension provides...

Performance portability across a diversity of system
architectures.

Reduction or elimination of errors due to use of
Inappropriate indices.

Simplified tuning of data structures when new algorithms
or physics packages are introduced.

Simplified refactoring.

Much stronger type checking by the compiler than is
currently available.

Enhanced readability of equations.

Centralization of traversal policy that can be exploited for
cache blocking and data movement on a variety of
architectural models (multi-core, NUMA, GPGPU).

Vector Extension Drawbacks

* Native debugging requires vector
extension support by mainstream
compilers (or direct use of intermediate
source).

* Level of abstraction is increased (although
not by much).

Transition to Vector Extension

e Using the vector extension requires four steps:

— Creating a schema to identify topological relationships
among Fields in your software (doubles as good
documentation).

— Stripping indices off of arrays in loops (can almost be
done by a sed script).

— Changing for loops over index variables into while
loops over IndexSets.

— Centralizing memory allocation for discrete Field
variables of interest. Many projects at the lab already
meet this requirement (wrapped malloc, database,
etc.).

Semi-Automatic “Vectorization”

* Existing software that conforms to certain
restrictions might be transformable to vector
extended code with limited user intervention.

« ROSE could help check for conformance issues:

— Tell user where non-resolvable conformance issues
exist.

— Correct simple conformance mistakes.

e This would allow users who are uncomfortable
with vector abstractions to implement and debug
their software In their current language, while
still gaining the advantages of using the vector
extended compiler.

Conclusion

A diversity of hardware architectures are being
Introduced simultaneously (Multi-core, NUMA,
GPGPU/vector coprocessors).

A low-impact change in our programming model
may provide a unified way of running effectively
on a diversity of system architectures.

A vector compiler has been written using ROSE
and Is avallable for anyone wanting to
experiment with native vector extended code.

The potential value of this approach is reflected

In the presented results. It would be nice to go
further.

Cache Performance

Opteron Hardware Counters
L1 Cache

Memory Hit
Interleave Hit Count Miss Count | Ratio

Array-like | 3955732080 | 286239697 | 93.3%

Intermediate | 2842569424 | 281404535 | 91.0%

Struct--like | 2769568352 | 273753504 | 91.1%

Some Correctness Features

Removal of explicit subscripting can reduce or eliminate
Indexing errors.

Nonsensical Field operations are easily caught by the

compiler in equations because every Field used in an

equation must either:

— be a topological sibling, ancestor, or descendant.

— be in a subspace that can be accessed through an appropriate
Relation array.

Improved bounds checking.

Consistent Field naming throughout the code (because
of schema template) allows for enhanced readability and
argument checking at caller/callee boundaries.

Multi-core Cache -- Threads

core | core core|core | core - core|core | core -
11 | L1 11 | L1 | L1 - 11 | L1 | L1 -
; e W o
$ $ $ $ $ $ $ $ $ $
Cycle 1 Cycle 2 Cycle 3

Multi-core Cache — MPI

core

core

core

L1

L1

L1

Cycle 1

Custom pool memory allocation allows
a vector in separate MPI processes
running on the same chip to be

cache aligned to a particular core.

Multi-core Cache — MPI

core | core Core-
11 | L1 | L1 -
m

Cycle 2

Each core works on its own array.
An L2 cache slice will be cyclically
owned by each core.

Multi-core Cache — MPI

core | core | core

L1 L1

L1

N E

Cycle 3

Finding an “Optimal” Schema

Cache Memory addresses:

0x00000 0x60000 0x80000
Phase k Element Fields Explosive Fields -
Phase k+1 Element Fields _
Phase m Element Fields Explosive Fields -

Phase m+1 Element Fields _

Search space for optimal schema is narrowed. Rather than having a
combinatorial problem over the space of all Fields, you have a combinatorial
problem over many small independent subspaces.

